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         abstract 
 Background:  The main objective of this study was to determine the input of different muscle groups during the flat 

bench press with different external loads and to determine whether regression models or Artificial Neural 
Networks (ANN) models predict sports results more precisely and indirectly better support and optimize 
the athletes’ selection process in the particular strength exercises.

 Material and methods:  The activity of four muscles was measured in four tasks: the pectoralis major (PM), the anterior deltoid 
(AD), the lateral head of triceps brachii (TB), and the latissimus dorsi (LD).

 Results:  The greatest increase in bioelectrical activity with increased external loads was observed on the LD during 
the descending phase of movement. Then, on the basis of results of 51 athletes, mathematical models 
were created and an additional study was conducted with the experimental group in order to verify the 
previously created models which were based on one group of 15 athletes. The regression models and 
perceptron networks demonstrated their capacity for making generalization and predicting sports results. 

 Conclusions:  The results of the investigation show that the created neural models (9-4-1 structure) offer much higher 
quality of prediction than a nonlinear regression model. 

 Key words:	 non-linear	models,	ANN,	sports	results,	flat	bench	press. 
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introduction 
The flat bench press is one of the most popular strength exercises performed 
by athletes of different sports disciplines. The outcomes gained by strongmen in 
this competition essentially depend on the level of motor skills acquired through 
training, abilities to use them in sports technique action, involvement (understood 
as emotional attitude) and also, but to a lesser extent, tactics in passing out  
another trial. A successful bench press lift is performed when the barbell is first 
lowered to the chest and then moved to a fully extended position again. The 
bench press consists from two phases: the ascending and descending one. The 
available data regarding bioelectrical activity of particular muscle groups during 
bench pressing is incomplete [1, 2]. 

In order to analyze particular motor activities, precise data related to basic 
variables are necessary. Most relationships in sports science are, unfortunately, 
not linear. Each unit change in the X variable will not always bring about the 
same change in the Y variable [2, 3]. Thus, researchers must apply nonlinear 
tools to describe such phenomena (i.e., nonlinear regression or neural models). 
A controversy exists related to which model is more accurate in predicting 
sports results.

It is hypothesized that the neural network modeling will better identify athletes’ 
potential in the flat bench press, compared to a typical regression model [4–7]. 
Neural networks can be employed wherever a relationship between explanatory 
variables (inputs) and explained variables (outputs) exists [8,9]. However, they are 
especially useful for seeking very complex input-output relationships, which are 
difficult to capture using statistical methods that are usually applied in such cases 
(e.g., the analysis of relationships or the separation of taxonomically homogenous 
groups). Given that the relationships between variables may be either linear or 
non-linear, recently, Artificial Neural Networks (ANNs) have been used more 
frequently to identify their actual nature. At present, this tool is frequently used 
for solving the modeling and prediction issues [5–7, 10–12]. 

This study has had two phases of investigation. During the first one, the main 
objective was to determine the input of different muscle groups during the 
flat bench press with different external loads. The second one was intended to 
determine whether regression models or ANN models predict sports results more 
precisely and so better support and optimize the athletes’ selection processes. An 
attempt was made to resolve the question which variables are the most informative 
and can be qualified as explanatory of the regression and neural models. 

material and method 
participants 
The study group consisted of 66 international level athletes (aged 21 ±2.5 yrs, 
body mass 78.2 ±7.6 kg; height 179.2 ±9.0 cm; 1-repetition maximum [RM] 
bench press: 121.2 ±12.4 kg) from the Silesian Macro-Region. The written 
informed consent form was obtained from all participants. The subjects were 
free from any known cardiovascular or metabolic diseases as reported in a 
health questionnaire. They were informed of the aim and experimental risks of 
the study. This project was approved by the Bioethics Committee for Scientific 
Research at the Academy of Physical Education in Katowice. The authors 
declare no conflict of interest. 
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electromyography 
The activity of four muscles was measured in four tasks: the pectoralis major 
(PM) the anterior deltoid (AD), the lateral head of triceps brachii (TB), and the 
latissimus dorsi (LD). The EMG signals were measured by a Pocket EMG System 
(BTS Company, Italy). All active channels were the same, and the measuring range 
was fitted to the subject (typically ±10mV). The analog signal was converted into 
a digital one with 16 bit sampling resolution and collected on a measure unit.

EMG exercise protocol 
After a general warm-up, each subject performed a specific warm-up that 
consisted of two sets of the bench press with 6 reps at 60%1RM. The 1RM value 
was used to determine the intensities of particular bouts that were applied 
during the testing session. The main session included four sets of one rep of 
the flat bench press with 70%, 80%, 90%, and 100% of 1RM.

data collection  
Multidimensional movement analysis was made with the measuring system 
Smart-E (BTS, Italy), which consisted of six infrared cameras (120Hz) and a 
wireless module to measure muscle bioelectric activity (Pocket EMG). For further 
analysis, separate tension values of the 4 chosen muscles were considered during 
ascending (A), descending (D) and the whole movement (Sum).

In order to test the hypothesis, multidimensional statistical analyses were applied 
to measurements taken in the construction  group. The values of variables 
measured by means of robust scales and tests were used in multiple regression 
models. The research problem was addressed using empirical and predictive 
investigation, based on the data obtained in the form of a multidimensional vector 
of variables, including independent Xn variables and one dependent variable 
Y-result. On the basis of results of 51 athletes, mathematical models were created. 
Then, an additional study was conducted with the testing group, in order to verify 
previously created models, which were based on one group of 15 athletes.

Numerous characteristics of the participants were measured as independent 
variables, such as body build, general and specific physical fitness. The most 
important variables were marked during the electromyography measurements. 
Two disposable surface electrodes were placed 2 cm apart over the motor points 
of the pectoralis major (PM) the anterior deltoid (AD), the lateral head of triceps 
brachii (TB), and the latissimus dorsi (LD) parallel to the muscle's fiber direction. 
The dependent variables were the results of the bench press. Measurements 
identified 32 variables. To determine the optimal set of predictors, the R0 vector 
was determined for the explanatory variables and the R1 vector for the correlations 
generated by the R0 vector for variables showing a significant correlation with 
the explained variable Y – the sports result. 

This approach allowed for determining 13 predictors which significantly improved 
the model’s explained variable Y – the sports results. However, four variables 
were removed from the model following statistical testing (hypothesis testing, 
significance testing and statistical verification of structural parameters of 
regression equation for dependent variable Y – within the meaning of the equation: 
sign (r(xj,y)) = sign (aj)). 

Ultimately, the regression equation was re-estimated with the remaining nine 
explanatory (statistically significant) variables: VmaxD – maximal velocity during 
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the descending phase (B = 1.3), AminA – minimal acceleration during the 
ascending phase (Beta = 0.6), ZA – anteroposterior displacement during 
the ascending phase (Beta = 0.5), AmaxA – maximal acceleration during the 
ascending phase (Beta = 0.8), VminA – minimal velocity during the descending 
phase (Beta = 0.3), TBD – Triceps Brachii during the descending phase (Beta 
= 0.4), XA – lateral displacement during the ascending phase (Beta = 0.4), YA 
– vertical displacement during the ascending phase (Beta = 0.6), TD – time of 
the descending phase (Beta = 0.7).

modelling procedure  
The data of 36 athletes which were entered into the neural net and regression 
models were obtained from one-year measurements. The data set was subdivided 
into three series: learning series (24 cases), validation series (6 cases) and test 
series (6 cases). Then, to enhance the model, 15 new training cases were added 
and estimated again (33 cases – learning series, 9 cases – validation series and 
9 cases – test series). 

Predictors were confirmed by regression and neural net models for the testing 
group, comprising a group of 15 other athletes, of the same age and training 
experience as the construction  group, and whose results were not used to build 
the models. The results of predictions for this group were verified by comparing 
the model-generated predictions with the actual results achieved by the same 
group one year later. 

statistical analyses 
Means and standard deviations were calculated for all variables. The Kolmogorov–
Smirnov test of normality and Levene’s test of homogeneity of variance were 
performed to verify the normality of distribution. The comparison of analyzed 
values before and after the introduction of the experimental factor was carried 
out with a two-way repeated measures ANOVA. When significant differences were 
found, Tukey HSD post-hoc tests were used. The effect size (η2) of each test was 
calculated for all analyses and was classified according to Hopkins [14]. Statistical 
significance was set at p < 0.05. The multiple stepwise regression was used to 
select explanatory variables offering the best prediction of athletes’ results in 
the construction phase. These nine predictor variables were log-transformed and 
used to form regression models predicting Y (results of the bench press). 

More formally, in a nonlinear model, at least one derivative with respect to a 
parameter should involve that parameter. In this study, the Y1(t) = exp(a1t + b1t2) 
nonlinear regression model was used and verified after being transformed to 
linear models using the transformation Xn1(t) = ln Y1(t). For generalization 
and prediction of sports results, Multilayer Perceptron (MLP) neural models 
were used to model the bench press with the following structures: 9-2-1, 9-3-1 
and 9-4-1. In the Neural Network Statistica Module (NNSM), 100 epochs is 
the standard procedure, followed by 30 epochs of optimization [15, 16]. The 
networks were trained using the Levenberg–Marquardt algorithm. The level 
of significance for all analyses was set at p ≤ 0.05.

All statistical analyses in both groups of athletes were carried out on a PC 
using the statistical package STATISTICA 9.1, STATISTICA Neural Networks 
Module (Release 9) and Excel 2010 from the Microsoft Office 2010.

Journal of Human Performance and Health 2019; 11 (1): b1-8
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results 
A two-way repeated measures ANOVA revealed a statistically significant 
effect of bioelectrical muscle activity in particular muscle groups, during the 
ascending phase of the lift under different external loads: anterior deltoid activity  
(ADA – F = 5.73 , η2 = 0.245, p = 0.001), triceps brachii activity (TBA – F = 34.12, 
η2 = 0.631, p = 0.001), latissimus dorsi activity (LDA – F = 23.22, η2 = 0.611,  
p = 0.001). 

The pectoralis major activity (PMA) showed no significant differences in muscle 
tension in relation to the lifted load (Fig. 1). A verification of data (Levene’s 
test) indicated the greatest increase in bioelectrical activity with increased 
external loads in the latissimus dorsi during the descending phase of movement 
(η2 = 0.618, p = 0.011).

Next, the correlation matrix was made for verification. Results showed 
no correlation between PMA and the results of bench pressing (r = 0.01). 
Furthermore, very high value of correlation between Y-results of bench pressing 
and variables: ADA (r = 0.29), TBA (r = 0.56), LDA (r = 0.50) was shown. 

The regression model for the bench press results had the following form:

Y(SportsResult)=281.8–209.4*VmaxD+780.5AminA+0.3*ZA–25.2*AmaxA–
267.2*VminA–112.7*TBD–1.4*XA+0.2*YA–32.3*TD

Using the same variables the perceptron models (multilayer perceptron – MLP) 
were constructed with the following structures: 9-2-1, 9-3-1 and 9-3-2-1. For 
networks 9-2-1 and 9-3-1 values of S. D. the ratio for validation series might not 
be satisfactory. Finally, the use of architecture 9-3-2-1 brought a breakthrough. 
In the group of 36 athletes, the quality measures for this network were 0.228 
for the training subset, 0.284 for the validation subset and 0.278 for the test 
subset. The results pointed to a good fit between the model and the training 
data. However, with 15 new training cases added to the model and following 
model re-estimation, the results improved. The network quality measure for 
the training subset demonstrated an even better fit between the network and 
the training data. With regard to new 9-3-2-1 networks, the NRMSE for the 
learning series was 0.114, and for the validation and test series 0.133 and 
0.118, respectively. Thus, the practical usefulness of this model was supported 
by a large magnitude of correlation coefficients between independent and 
dependent variables in each group.

Table 1 includes the results of the verification procedure by which the prediction 
values generated by the nonlinear neural networks and nonlinear regression 
models for athletes in the bench press (n = 15, the new one of the same age 
and training experience as the construction group, and whose results were 
not used to build the models), were compared with the actual results for the 
tested athletes.
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Table 1. Predictions for Y- bench press results

N
True  

Values 
[kg]

MLP 9-3-2-1 Regression model

Calculated 
Value of 

Network [kg]

Network Error 
[kg]

Absolute 
Network Error 

[kg]

Calculated 
Value of 

Regression  
[kg]

Regression 
Error [kg]

Absolute 
Regression 
Error [kg]

1 105 105.5 0.5 0.5 106.5 1.5 1.5
2 107.5 108.4 0.9 0.9 108.9 1.4 1.4
3 95 98 3 3 99 4 4
4 120 119 -1 1 117 -3 3
5 115 116.5 1.5 1.5 118 3 3
6 130 129.5 -0.5 0.5 133 3 3
7 125 123.5 -1.5 1.5 126 1 1
8 105 104.5 -0.5 0.5 108 3 3
9 115 115 0 0 115.5 0.5 0.5
10 122.5 121.2 -1.3 1.3 124.8 2.3 2.3
11 117.5 114.7 -2.8 2.8 116.3 -1.2 1.2
12 90 90.5 0.5 0.5 92.4 2.4 2.4
13 122.5 121.5 -1 1 124.7 2.2 2.2
14 140 141.2 1.2 1.2 145.3 5.3 5.3
15 132.5 131.4 -1.1 1.1 133.5 1 1
16 117.5 116.4 -1.1 1.1 119.4 1.9 1.9
17 110 109.5 -0.5 0.5 112 2 2
18 105 104 -1 1 108 3 3
19 115 115.4 0.4 0.4 116.4 1.4 1.4
20 107.5 107 -0.5 0.5 108 0.5 0.5

Sum: -4.8 20.8* Sum: 35.2 43.6*

discussion 
The main objective of the research was to identify the efficiency and predictive 
usefulness of artificial neural networks treated as an athlete recruitment tool in 
contrast to the widely used regression models. In order to accomplish the intended 
goals, an attempt was made to define which variables were the most informative 
and qualified best to play the role of the models’ explanatory variables. 

The regression model identified the following predictors as the most important: 
maximal velocity of the bar during the descending phase, maximal acceleration 
of the bar during the ascending phase, time of the descending phase and 
vertical displacement during the ascending phase. The results of the analysis 
are in accordance with the conclusions of Reynolds et al. [17] and Requena et 
al [18]. Unfortunately, there is little data about the application of regression 
and discrimination models in powerlifting. Thus, it is difficult to compare our 
results to others. Therefore, these variables significantly influenced sports 
results in the analyzed group of the athletes. 

The same variables that were found to be most informative and qualified for 
the role of explanatory variables in the regression models were used to build 
the neural models. For the network with a structure 9-2-1, Normalized Root 
Mean Squared Error (NRMSE) was too high and unsatisfactory to claim that 
this model adjusted well to learning data (0.478), 0.488 (testing data) and 
0.476 (validation data). The network 9-3-1 reached better results than 9-2-1. 
Results for networks 9-2-1 and 9-3-1 showed problems of decreased ability 
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for generalization [19]. However, the value in validation and test series and the 
correlation coefficient in those groups (0.96) implicated a necessity to build 
more models with a larger number of neurons in a hidden layer, which could 
approximately fit better into the network and learning data in the first set [19]. 
The quality measures for the network structured as 4-3-2-1 built for the first 40 
cases pointed to a good fit between the model and the training data. However, 
with 20 new training cases added to the model and following model re-estimation, 
the results improved. Moreover, the quality measures for all the subsets provided 
strong arguments in favor of the network’s high ability to generalize and predict 
results, and this finding was the main reason for which the investigation was 
initiated. The practical value of the created model was confirmed by the already 
mentioned high correlation coefficients: 0.957, 0.961, and 0.979. 

In order to test the comparisons of the results that were used to build the 
regression models and the neural networks, 20 athletes whose results were not 
built into the models were tested. Their bench pressing results were measured 
and the quality of the predictions was verified after training. The analysis of 
the results presented in Table 1 (absolute error modules) shows that the neural 
models’ algorithms are superior to the regression models as far as prediction is 
concerned. The absolute values of the models’ error were different by 22.80 kg 
favoring the neural model. Additionally, the neural model was of greater accuracy 
in the case of athletes achieving medium or poor results. The negative total 
error of the network indicates that the model makes larger errors in athletes 
with better results in the bench press. The above data on a group of 20-year-old 
athletes clearly show that the neural model better predicts sports results than the 
regression model, confirming also findings of Bartlett et al. [20] and Whisenant 
et al. [21], whose non-linear neural models provided predictions of better quality 
than the multiple regression models. Murakami et al. [21] indirectly proved that 
neural models are capable of better predictions than nonlinear or linear regression 
models. The opinion that networks with a small number of hidden layers (i.e. 
structure 9-3-2-1 or 9-3-1) should be preferred in constructing neural models for 
predicting relationships in the field of sport corresponds to the opinion of Shojaie 
and Michailidis [23] expressed in their study that the networks with one or two 
hidden layers had the greatest capacity for generalization.

conclusions 
The results of the investigation show that the created neural models offer much 
higher quality of prediction than a nonlinear regression model. The former 
generates smaller prediction errors which directly follow from the absolute 
error. The optimal set of variables that are the most informative and usable 
as the explanatory variables of the nonlinear regression models and neural 
models in the tested group of 20-year-old athletes for Y (results of bench 
pressing) consists of: maximal velocity during the descending phase, minimal 
acceleration during the ascending phase, anteroposterior displacement during 
the ascending phase, maximal acceleration during the ascending phase, 
minimal velocity during the descending phase, triceps brachii during the 
descending phase , lateral displacement during the ascending phase, vertical 
displacement during the ascending phase, time of the descending phase.

The study results explicitly demonstrate that the neural models are a tool 
which is far superior and offers better optimization possibilities in predicting 
sports results, athletes’ recruitment and selection processes, than the widely 
applied regression models. 
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